погорелов 9 класс решебник математика гдз биболетова 6 класс тетрадь новый решебник решебник обществознание 10 класс боголюбов петерсон решебники за 8 класс решебник по немецкому решебник решебник по алгебре 2012 макарычев решебник гиа математика 9 класс геометрия рабочая решебник activity book решебник скачать гдз биболетова 5 6 ответы на квест здесь здесь на сайте вопросы и ответы бесплатно контурные карты бим 6 алгебра ершов 7 класс решебник ершова голобородько 11 класс решебник решебник онлайн new millennium ссылка решебник 3 класс планета знаний ссылка решебник физика 9 класс скачать http решебник slovo львов гдз по русскому языку 4 гдз бархударов гдз по английскому афанасьева михеев математика ссылка на сайте

Granitvtd - учебник-справочник по черчению

Главная страница arrow Параллельное проецирование arrow § 24. Чертежи в системе прямоугольных проекций
§ 24. Чертежи в системе прямоугольных проекций
Вы научились строить аксонометрические изображения, в основу которых положено параллельное проецирование. С помощью параллельного проецирования можно построить и другие изображения.

Наиболее широко применяемыми в технике являются изображения, которые получены при прямоугольном проецировании на одну, две и три взаимно перпендикулярные плоскости проекций.


Прямоугольное (ортогональное) проецирование точки на одну плоскость проекций.



Рассмотрим самый простой случай — ортогональное проецирование точки (рис.  102). Перед плоскостью проекций поместим точку А и через нее проведем проецирующий луч Sa под прямым углом к плоскости проекций до пересечения с ней. Получим точку а — проекцию точки А.

Image 



Вывод:


1. Проекция точки на данную плоскость проекций есть точка.
2. Любая проецируемая точка имеет одну проекцию на выбранной плоскости проекций.
3. Проекция точки, лежащей на плоскости проекций, совпадает с самой точкой.

Рассмотрим другой пример. На проецирующем луче разместим три точки: А, В, С (рис. 103). Их проекцией на плоскости Р является точка а, следовательно, adbsc. По одной проекции нельзя определить, сколько объектов (точек) было на нее спроецировано.

Image 



Вывод:


1. Любое количество точек, находящихся на одном проецирующем луче, проецируется в одну точку.
2. Для определения положения точки в пространстве одной ее проекции недостаточно.



Метод выполнения прямоугольных изображений на две взаимно перпендикулярные плоскости проекций впервые был разработан в 1799 году французским инженером и ученым Гаспаром Монжем, который считается основоположником начертательной геометрии - науки об изображении предметов и графических способах решения задач.



Для того чтобы получить две проекции точки, определяющих положение ее в пространстве, возьмем две взаимно перпендикулярные плоскости: V — фронтальную и Н — горизонтальную. Они будут пересекаться по прямой ох, которую называют осью проекций (рис. 104).

Расположим точку А в двугранном углу. Используя метод прямоугольного проецирования, спроецируем ее на плоскости проекций, получим фронтальную (а') и горизонтальную (а) проекции точки А. Запись а' читается как «а штрих».

Image 



Мы рассмотрели метод получения изображений точки А в системе двух плоскостей проекций. Чтобы решить обратную задачу: по изображениям точки найти ее положение в пространстве, необходимо от проекций а и а' провести проецирующие лучи перпендикулярно плоскостям проекций. Их пересечение определит положение точки А в пространстве.



Повернем плоскость Н вокруг оси ох на 90° вниз, до совмещения с плоскостью V, как показано на рис. 105. Получим ортогональные проекции точки. Обратите внимание на то, что проекции а и а расположились на одной прямой а'а (рис. 105). Линия аа' называется линией проекционной связи.

Image 



Выводы:


1. Фронтальная и горизонтальная проекции точки всегда находятся на перпендикуляре к оси проекций ох, называемом линией проекционной связи.
2. Отрезок аах — есть расстояние точки А до плоскости V.
3. Отрезок а'ах — расстояние точки А до плоскости Н.
4. Положение точки в пространстве определяют две ее проекции.



Прямоугольное (ортогональное) проецирование точки на три плоскости проекций.



Рассмотрим проецирование точки А на три взаимно перпендикулярные плоскости. К фронтальной и горизонтальной плоскостям проекций добавим третью — профильную плоскость проекций (W — «дубль вэ»), которую расположим перпендикулярно к плоскостям V и Н. Используя метод ортогонального проецирования, отобразим точку на трех плоскостях проекций. На профильной плоскости проекций получим изображение, которое будем называть профильной проекцией точки. Профильная проекция обозначается а", а читается как «а два штриха» (рис. 106).



Плоскости проекций Н и W разворачивают до совмещения с плоскостью V, как показано на рис. 106, 107.

Линии пересечения плоскостей являются осями проекций ox, оу, oz (рис. 106). Обратим внимание на то, что проекции а' и а, а' и а", а и а" лежат на прямых, называемых линиями проекционной связи (рис. 107). Такая зависимость в  расположении проекции точки называется проекционной связью и при выполнении чертежей должна обязательно соблюдаться. Чертеж, состоящий из нескольких прямоугольных проекций, называется чертежом в системе прямоугольных проекций, или ортогональным чертежом.

Image 

Image 



Чертеж точки в системе прямоугольных проекций представлен на рис. 107, б.



Построение третьей проекции точки по двум заданным.

Если известны любые две проекции точки (например, а и а'), то можно найти третью проекцию (в нашем примере а"). Для этого можно использовать постоянную прямую чертежа, которая проводится под углом 45° (рис. 108). Через заданные проекции а и а' точки А проводим линии связи перпендикулярно к осям OZ и оу. Точки пересечения линий связи дают искомую проекцию а". Перенос линии проекционной связи с оси оун на ось oyw осуществляется с помощью постоянной прямой I (рис. 108). Так с помощью вспомогательной прямой находится третья проекция а" точки А по двум заданным.

Image 



Профильную проекцию а" точки А можно найти способом координирования, показанным на рис. 109. Из точки а' проведем линию проекционной связи к оси Z, на ней отложим отрезок aza" = axa. Обратите внимание на то, что расстояние от оси Z до профильной проекции точки равно расстоянию от оси х до ее горизонтальной проекции.

Image 



Вопросы и задания


1. Что называется проекцией?
2. Как обозначаются проецируемая точка и ее проекции?
3. Можно ли по одной проекции определить положение точки в пространстве?
4. Опишите процесс получения проекций при прямоугольном проецировании на две взаимно перпендикулярные плоскости.
5. Что называется плоскостью проекций?
6. Какие плоскости проекций вы знаете? Как они обозначаются?
7. Рассмотрите внимательно чертеж,  представленный на рис. 110, и дайте ответы на вопросы:
—  Сколько точек изображено на чертеже?
—  Какие точки равноудалены от плоскостей Н и V?
—  Как расположены точки В и D в пространстве?
—  К какой плоскости проекций ближе расположена точка С?
8.  Скажите, какая из точек не изображена на плоскости W (рис. 111)?
9.  По двум проекциям точки А а' и а" найдите третью ее проекцию (рис. 112).

Image 

Image